JABIL

800G Active Optical Cable

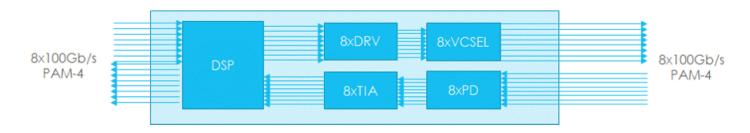
(Breakout Cable 2x400G)

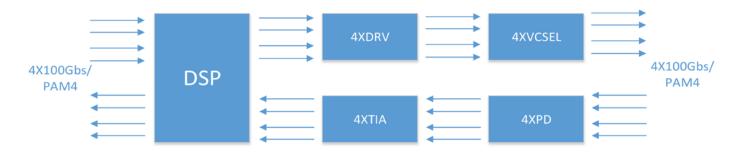
Jabil Photonic 800G Active Optical Cable (breakout 2x400G) provides optimized solutions for interconnections inside datacenter up to 50M on 0M4 fiber. Products is in OSFP form factor on the 800G side and is in QSFP112 form on the 400G side to satisfy the different host system requirements. Transmission is based on VCSEL 850nm with electrical driver, while Receiver side is based on PIN photodetector and TIA. Module is equipped with DSP to provide channel equalization, PAM4 retimer and supports electrical lanes loss on host system with up to 30dB.

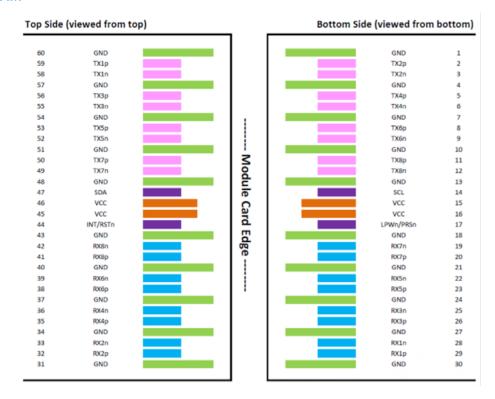
FEATURES

- · OSFP and QSFP112 MSA compliant
- 106.25Gb/s transmission for each direction
- · Host side up to 30dB of electrical loss
- · DSP for equalization and performance
- · Cable length: 3m, 10m, 50m
- Operating temperature 0° to 70°C
- · CMIS 5.0 standard interface

APPLICATIONS


Intra-datacenter short connections


PRODUCT ARCHITECTURE


800G END

400G END

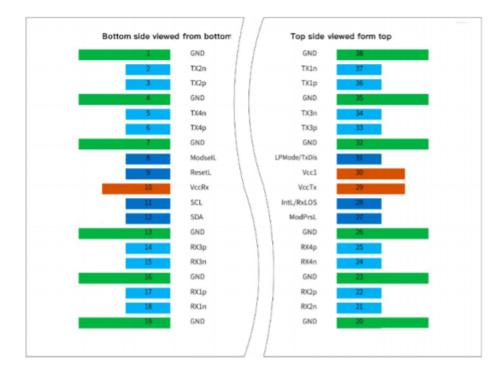
OSFP PIN DIAGRAM

OSFP PIN DESCRIPTIONS

PIN#	SYMBOL	DESCRIPTION	LOGIC	DIRECTION	PLUG SEQUENCE ²	NOTES
1	GND	Ground			1	
2	TX2p	TX Non-Inverted	CML-I	Input from Host	3	
3	TX2n	TX Inverted	CML-I	Input from Host	3	
4	GND	Ground			1	
5	ТХ4р	TX Non-Inverted	CML-I	Input from Host	3	
6	TX4n	TX Inverted	CML-I	Input from Host	3	
7	GND	Ground			1	
8	ТХ6р	TX Non-Inverted	CML-I	Input from Host	3	
9	TX6n	TX Inverted	CML-I	Input from Host	3	
10	GND	Ground			1	

- (1) Open-Drain with pull up resistor on Host.
- (2) Plug Sequence specifies the mating sequence of the host connector and module. The sequence is 1, 2, 3

⁽¹⁾ Open-Drain with pull up resistor on Host.


⁽²⁾ Plug Sequence specifies the mating sequence of the host connector and module. The sequence is 1, 2, 3

PIN#	SYMBOL	DESCRIPTION	LOGIC	DIRECTION	PLUG SEQUENCE ²	NOTES
38	RX6p	RX Non-Inverted	CML-O	Output to Host	3	
39	RX6n	RX Inverted	CML-O	Output to Host	3	
40	GND	Ground			1	
41	RX8p	RX Non-Inverted	CML-O	Output to Host	3	
42	RX8n	RX Inverted	CML-O	Output to Host	3	
43	GND	Ground			1	
44	INT/RSTn	Module Interrupt/Module Reset	Multi-Level	Bi-directional	3	
45	VCC	+3.3V Power		Power from Host	2	
46	VCC	+3.3V Power		Power from Host	2	
47	SDA	2-wire Serial interface data	LVCMOS-I/O	Bi-directional	3	1
48	GND	Ground			1	
49	TX7n	TX Inverted	CML-I	Input from Host	3	
50	TX7p	TX Non-Inverted	CML-I	Input from Host	3	
51	GND	Ground			1	
52	TX5n	TX Inverted	CML-I	Input from Host	3	
53	ТХ5р	TX Non-Inverted	CML-I	Input from Host	3	
54	GND	Ground			1	
55	TX3n	TX Inverted	CML-I	Input from Host	3	
56	ТХЗр	TX Non-Inverted	CML-I	Input from Host	3	
57	GND	Ground			1	
58	TX1n	TX Inverted	CML-I	Input from Host	3	
59	TX1p	TX Non-Inverted	CML-I	Input from Host	3	
60	GND	Ground			1	

⁽¹⁾ Open-Drain with pull up resistor on Host.

⁽²⁾ Plug Sequence specifies the mating sequence of the host connector and module. The sequence is 1, 2, 3

QSFP112 PIN DIAGRAM

OSFP112 PIN DESCRIPTIONS

PAD	LOGIC	SYMBOL	DESCRIPTION	PLUG SEQUENCE	NOTES
1		GND	Ground	1	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3	
4		GND	Ground	1	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3	
7		GND	Ground	1	1
8	LVTTL-I	ModSelL	Select	3	
9	LVTTL-I	ResetL	Reset	3	
10		Vcc Rx	+3.3 V Power supply receiver	2	2

⁽¹⁾ GND is the symbol for signal and supply (power) common for the QSFP112 module. All are common within the QSFP112 module and all voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.

⁽²⁾ Vcc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power supplies and shall be applied concurrently.

PAD	LOGIC	SYMBOL	DESCRIPTION	PLUG SEQUENCE	NOTES
11	LVCMOS-I/O	SCL	2-wire serial interface clock	3	
12	LVCMOS-I/O	SDA	2-wire serial interface data	3	
13		GND	Ground	1	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3	
15	CML-O	Rx3n	Receiver Inverted Data Output	3	
16		GND	Ground	1	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3	
18	CML-O	Rx1n	Receiver Inverted Data Output	3	
19		GND	Ground	1	1
20		GND	Ground	1	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3	
23		GND	Ground	1	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3	
26		GND	Ground	1	1
27	LVTTL-0	ModPrsL	Present	3	
28	LVTTL-0	IntL/RxLOS	Interrupt/optional RxLOS	3	
29		Vcc Tx	+3.3 V Power supply transmitter	2	2
30		Vcc1	+3.3 V Power Supply	2	2
31	LVTTL-I	LPMode/ Tx Dis	Low Power Mode/optional TX Disable	3	
32		GND	Ground	1	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3	
34	CML-I	Tx3n	Transmitter Inverted Data Input	3	
35		GND	Ground	1	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3	
37	CML-I	Tx1n	Transmitter Inverted Data Input	3	
38		GND	Ground	1	

⁽¹⁾ GND is the symbol for signal and supply (power) common for the QSFP112 module. All are common within the QSFP112 module and all voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.

⁽²⁾ Vcc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power supplies and shall be applied concurrently.

ABSOLUTE MAXIMUM RATINGS

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

PARAMETER	SYMBOL	MIN	TYPICAL	MAX	UNIT	NOTES
Storage Temperature	T _s	-40		85	°C	
Storage Ambient Humidity	H _A	0		85	%	
Maximum Supply Voltage	V _{cc}	-0.5		3.6	V	

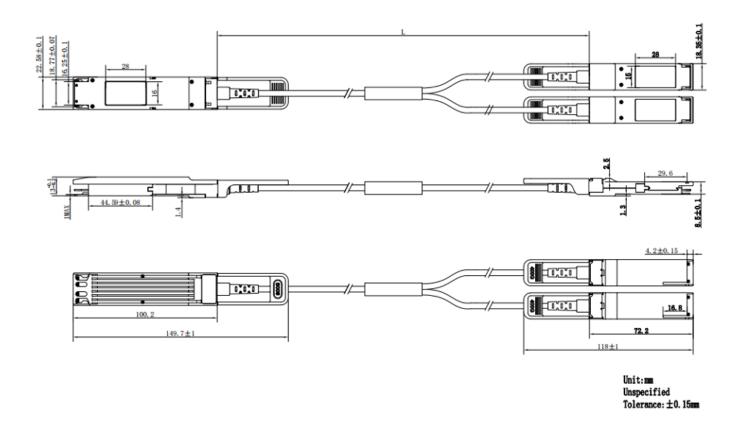
RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	TYPICAL	MAX	UNIT	NOTES
Operating Case Temperature	Tcase	0	25	70	°C	
Supply Voltage	VCC	3.135	3.3	3.465	V	
Relative Humidity	RH	5		85	%	
Data Data (Outline)	DDO		8x106.25		Gbps	800G end
Data Rate (Optical)	DRO		4x106.25		Gbps	400G end
Data Data (Flactuical)	555		8x106.25		Gbps	800G end
Data Rate (Electrical)	DRE		4x106.25		Gbps	400G end

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	MIN	TYPICAL	MAX	UNIT	NOTES
Davier Discination	D			16	W	800G end
Power Dissipation	P _d			8	W	400G end
	TRANS	MITTER				
Data Rate, each lane	DRE		106.25		Gbps	
Differential Voltage pk-pk	VIN	40		900	mV	
Input differential impedance	ZIN		100		Ohm	
Differential Termination Resistance Mismatch				10	%	
	RECE	IVER				
Data Rate, each lane	DRE		106.25		Gbps	
Output differential impedance	Z _{out}		100		Ohm	
Differential Termination Resistance Mismatch				10	%	
Differential output voltage	V _{OUT}			1000	mV	

OPTICAL CHARACTERISTICS


PARAMETER	SYMBOL	MIN	TYPICAL	MAX	UNIT	NOTES
Signaling Speed per Lane	DRO		106.25		Gbps	
Center Wavelength	λ		850		nm	
RMS Spectral Width	Δλ			0.6	nm	
Average launch power		-1		4	dBm	
TX TDECQ				4.4	dB	
TX ER		2.5			dB	

ORDERING INFORMATION

JABIL PART NUMBER	PACKAGE	REACH	OTHER INFO
OS8CXXACC00Y2ZZ	800G OSFP to 2*400G BREAKOUT	XX=fiber length	C-temp AOC

Note: additional cable lengths can be provided on request.

AOC MECHANICAL SPECIFICATIONS

REGULATORY COMPLIANCE

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

FEATURE	REFERENCE STANDARDS	PERFORMANCE
ESD-HBM	JESD22-A114-B	1KV high speed Pins, 2KV other Pins
ESD-Air Discharge	IEC 61000-4-2	+/-15KV
ESD-Contact Discharge	IEC 61000-4-2	+/-8KV
EMC-RE	FCC Part 15 Class B	
EMC-RS	IEC 61000 4-3	
ROHS 2.0	2011/65/EU	

For additional information, visit jabil.com

About Jabil

At Jabil (NYSE: JBL), we are proud to be a trusted partner for the world's top brands, offering comprehensive engineering, manufacturing, and supply chain solutions. With over 50 years of experience across industries and a vast network of over 100 sites worldwide, Jabil combines global reach with local expertise to deliver both scalable and customized solutions. Our commitment extends beyond business success as we strive to build sustainable processes that minimize environmental impact and foster vibrant and diverse communities around the globe.

